High-optical-quality nanosphere lithographically formed InGaAs quantum dots using molecular beam epitaxy assisted GaAs mass transport and overgrowth

نویسندگان

  • Xifeng Qian
  • Shivashankar Vangala
  • Daniel Wasserman
  • William D. Goodhue
چکیده

Optically active, highly uniform, cylindrical InGaAs quantum dot QD arrays have been fabricated using nanosphere lithography combined with Bromine ion-beam-assisted etching and molecular beam epitaxy MBE -assisted GaAs mass transport. Previously fabricated QD nanopillar arrays showed significant degradation of optical properties due to the etch damage. Here, a novel mass transport process in a Riber 3200 was performed to encapsulate the lithographically defined InGaAs disk QDs in a GaAs matrix, resulting in the passivation of the etch-damaged QD sidewall layer. Photoluminescence emission intensity following the mass transport process increased by a magnitude of 4–10 as compared to that from unprocessed nanopillar sample. In addition, a PL peak energy redshift was observed after mass transport, presumably due to the decrease in the lateral barrier potential from vacuum to GaAs, as well as the elimination of the depletion layer. Furthermore, the mass transport process in the high vacuum MBE environment enables GaAs overgrowth with few defects and dislocations following mass transport for surface planarization. PL emission intensity increased by an additional factor of 4 following GaAs overgrowth, bringing the QD intensity to 1 2 of that of the original single quantum well. Thus, the potential of the MBE-assisted mass transport process has been demonstrated to fabricate high optical quality InGaAs quantum dots encapsulated in a GaAs matrix for device applications. © 2010 American Vacuum Society. DOI: 10.1116/1.3273941

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical properties of artificial and self-organized InGaAs/GaAs quantum dots obtained on non-conventional GaAs surfaces

In the past few years, much attention has been devoted to the study of three-dimensional (3D) coherent islands structures referred to as quantum dots (QDs). These structures have mainly been obtained in high lattice-mismatched systems such as Ge/Si (100), InAs/GaAs (100), InGaAs/GaAs (100) and InP/InGaP (100). In such systems, nanoscaled islands organize themselves during growth, following the ...

متن کامل

The effect of encapsulation on the morphology and chemical composition of InAs/GaAs quantum dots grown by molecular beam epitaxy

In order to fabricate an effective device structure based on InAs quantum dots (QDs), the QD layers must be encapsulated within a matrix that has a wider band gap. This encapsulation is usually achieved by the overgrowth of GaAs. Coherent strained InAs/GaAs islands, which were previously formed on the (0 0 1) GaAs substrate surface, can then be buried in the semiconductor matrix to form QDs. Th...

متن کامل

Growth and optical properties of self-assembled InGaAs Quantum Posts

We demonstrate a method to grow height controlled, dislocation-free InGaAs quantum posts (QPs) on GaAs by molecular beam epitaxy (MBE) which is confirmed by structural investigations. The optical properties are compared to realistic 8-band k · p calculations of the electronic structure which fully account for strain and the structural properties of the QP. Using QPs embedded in n-i-p junctions ...

متن کامل

The effects of quantum dot coverage in InAs/(In)GaAs nanostructures for long wavelength emission

We present a study on the effects of quantum dot coverage on the properties of InAs dots embedded in GaAs and in metamorphic In0.15Ga0.85As confining layers grown by molecular beam epitaxy on GaAs substrates. We show that redshifted emission wavelengths exceeding 1.3 μm at room temperature were obtained by the combined use of InGaAs confining layers and high quantum dot coverage. The use of hig...

متن کامل

Single-photon emission from single InGaAs/GaAs quantum dots grown by droplet epitaxy at high substrate temperature

The authors report single-photon emission from InGaAs quantum dots grown by droplet epitaxy on (100) GaAs substrates using a solid-source molecular beam epitaxy system at elevated substrate temperatures above 400°C without post-growth annealing. High-resolution micro-photoluminescence spectroscopy exhibits sharp excitonic emissions with lifetimes ranging from 0.7 to 1.1 ns. The coherence proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010